Powered by OpenAIRE graph

Halothane Inhibits Contraction and Action Potential Duration to a Greater Extent in Subendocardial than Subepicardial Myocytes from the Rat Left Ventricle

Authors: A, Rithalia; C N, Gibson; P M, Hopkins; S M, Harrison;

Halothane Inhibits Contraction and Action Potential Duration to a Greater Extent in Subendocardial than Subepicardial Myocytes from the Rat Left Ventricle

Abstract

Background Halothane inhibits the 4-aminopyridine-sensitive transient outward K(+) current (I(to)) which in many species, including humans, plays an important role in determining action potential duration. As I(to) is greater in the ventricular subepicardium than subendocardium, halothane may have differential effects on action potential duration and, therefore, contraction in cells isolated from these two regions. Methods Myocytes were isolated from the subendocardium and subepicardium of the rat left ventricle. Myocytes from each region were electrically stimulated at 1 Hz to measure contractions and action potentials and exposed to 0.6 mm halothane (approximately 2 x minimum alveolar concentration(50) for the rat) for 1 min. The time from the peak of the action potential to repolarization at 0 and -50 mV was measured to assess the effects of halothane on action potential duration. Results Halothane inhibited contraction to a significantly (P = 0.002) greater extent in subendocardial myocytes than in subepicardial myocytes: the amplitude of contraction during control conditions was 3.6 +/- 0.4 microm and 3.2 +/- 0.7 microm in subendocardial and subepicardial cells, respectively, and this was reduced to 1.1 +/- 0.2 microm (29 +/- 2% of control, P < 0.0001, n = 10) and 1.4 +/- 0.3 microm (46 +/- 3% of control, P = 0.007, n = 7), respectively, after a 1-min exposure to 0.6 mm halothane. Control action potential duration (at -50 mV) was 67 +/- 10 and 28 +/- 4 ms in subendocardial and subepicardial myocytes, respectively, and these values were reduced to 39 +/- 6 ms (58 +/- 3% of control, P < 0.001) and 20 +/- 3 ms (73 +/- 5% of control, P = 0.009) by halothane, respectively. Conclusions Action potential duration was reduced to a greater extent in subendocardial than subepicardial myocytes, which would contribute to the greater negative inotropic effect of halothane in the subendocardium. Furthermore, the transmural difference in action potential duration was reduced by halothane, which could contribute to its arrhythmogenic properties.

Related Organizations
Keywords

Heart Ventricles, Anesthetics, Inhalation, Action Potentials, Animals, Rats, Wistar, Halothane, Cells, Cultured, Electric Stimulation, Muscle Contraction, Rats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%