Powered by OpenAIRE graph

Telmisartan increases fatty acid oxidation in skeletal muscle through a peroxisome proliferator-activated receptor-γ dependent pathway

Authors: Ken, Sugimoto; Ludmila, Kazdová; Nathan R, Qi; Masaya, Hyakukoku; Vladimír, Kren; Miroslava, Simáková; Václav, Zídek; +2 Authors

Telmisartan increases fatty acid oxidation in skeletal muscle through a peroxisome proliferator-activated receptor-γ dependent pathway

Abstract

Telmisartan is an angiotensin II receptor blocker and selective modulator of peroxisome proliferator-activated receptor-gamma reported to increase energy expenditure and improve glucose and lipid metabolism compared with other angiotensin II receptor blockers. As muscle fatty acid oxidation is a major determinant of energy expenditure, we investigated the effects of telmisartan on skeletal muscle fatty acid oxidation in a rat model of the metabolic syndrome.We measured fatty acid oxidation in soleus muscles obtained from polydactylous (PD)/Cub rats fed a high sucrose, high fat diet and treated with either telmisartan or losartan. In addition, we measured fatty acid oxidation in soleus muscle tissue isolated from Sprague-Dawley rats, incubated for 3 h with either telmisartan or valsartan.Compared with treatment with losartan, treatment with telmisartan was associated with significantly greater palmitate oxidation in skeletal muscle (44.4 +/- 2.9 versus 28.9 +/- 3.2 nmol palmitate/g/2 h, P = 0.004) as well as significantly greater glucose tolerance and significantly lower body weight and visceral adiposity. In addition, in-vitro incubation of skeletal muscle with telmisartan induced significantly greater increase in palmitate oxidation than in-vitro incubation with valsartan (9.4 +/- 1.6 versus 0.2 +/- 4.3 nmol palmitate/g/h, P < 0.05). The increased fatty acid oxidation induced by telmisartan in vitro was blocked by addition of the peroxisome proliferator-activated receptor-gamma antagonist GW9662 (-0.4 +/- 1.8 nmol palmitate/g/h, P < 0.05).The current results are consistent with the possibility that telmisartan may increase energy expenditure and protect against dietary induced obesity and features of the metabolic syndrome at least in part by increasing muscle fatty acid oxidation through activation of peroxisome proliferator-activated receptor-gamma.

Keywords

Male, Fatty Acids, Weight Gain, Benzoates, Losartan, Rats, PPAR gamma, Rats, Sprague-Dawley, Animals, Benzimidazoles, Telmisartan, Rats, Wistar, Muscle, Skeletal, Angiotensin II Type 1 Receptor Blockers, Oxidation-Reduction, Adiposity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Average
Top 10%
Top 10%