Suppressive effect of an activator of ATP-dependent potassium channels, flocalin, on electrical and contractile activities of smooth muscles of the guinea-pig ureter
Suppressive effect of an activator of ATP-dependent potassium channels, flocalin, on electrical and contractile activities of smooth muscles of the guinea-pig ureter
In experiments on isolated segments or strips obtained from the guinea-pig ureter, we showed, using a sucrose-gap technique, that application of an activator of ATP-dependent potassium channels (KATP), (flocalin (PF-5), suppresses generation of action potentials (APs) by ureter smooth muscle cells (SMCs). Pre-incubation of the ureter preparations under study in Krebs solution containing 1 to 10 μM PF-5 results initially in a decrease in the frequency of oscillations preceding an AP plateau, shortening of this plateau, and, later on, complete inhibition of AP generation. In the presence of PF-5, spikes induced by hyperpotassium depolarization were also inhibited, while a tonic component of such depolarization underwent a mild decrease. The data obtained indicate that PF-5 modulates the entry of Ca2+ ions through L-type voltage-dependent channels in the SMC membrane. Shortening of the plateau and suppression of the spikes initiated by application of an activator of voltage-dependent L-type potassium channels, Bay K 8644, can be considered a confirmation of the modulatory influence of PF-5 on voltage-dependent L-type potassium channels. It seems possible that Bay K 8644 can be used under experimental conditions for initiation and long-lasting modulation of APs generated by the ureter SMC instead of corresponding neurotransmitters. We hypothesize that voltage-dependent entry of Ca2+ ions into SMCs depends significantly on the PF-5-induced activation of KATP channels of the ureter SMCs.
9 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
