Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Dental Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
UNC Dataverse
Article . 2013
Data sources: Datacite
versions View all 3 versions

M180 Amelogenin Processed by MMP20 is Sufficient for Decussating Murine Enamel

Authors: M K, Pugach; C, Suggs; Y, Li; J T, Wright; A B, Kulkarni; J D, Bartlett; C W, Gibson;

M180 Amelogenin Processed by MMP20 is Sufficient for Decussating Murine Enamel

Abstract

Amelogenin (AMELX) and matrix metalloproteinase-20 (MMP20) are essential for proper enamel development. Amelx and Mmp20 mutations cause amelogenesis imperfecta. MMP20, a protease secreted by ameloblasts, is responsible for processing enamel proteins, including AMELX, during the secretory stage of enamel formation. Of at least 16 different amelogenin splice products, the most abundant isoform found in murine ameloblasts and developing enamel is the M180 protein. To understand the role of MMP20 processing of M180 AMELX, we generated AmelxKO/ Mmp20KO (DKO) mice with an amelogenin (M180Tg) transgene. We analyzed the enamel phenotype by SEM to determine enamel structure and thickness, µCT, and by nanoindentation to quantify enamel mechanical properties. M180Tg/DKO mouse enamel had 37% of the hardness of M180Tg/ AmelxKO teeth and demonstrated a complete lack of normal prismatic architecture. Although molar enamel of M180Tg/ AmelxKO mice was thinner than WT, it had similar mechanical properties and decussating enamel prisms, which were abolished by the loss of MMP20 in the M180Tg/DKO mice. Retention of the C-terminus or complete lack of this domain is unable to rescue amelogenin null enamel. We conclude that among amelogenins, M180 alone is sufficient for normal enamel mechanical properties and prism patterns, but that additional amelogenin splice products are required to restore enamel thickness.

Keywords

Mice, Knockout, Amelogenin, Genotype, Mice, Transgenic, X-Ray Microtomography, Biomechanical Phenomena, Mice, Matrix Metalloproteinase 20, Phenotype, Amelogenesis, Hardness, Elastic Modulus, Ameloblasts, Microscopy, Electron, Scanning, Animals, Protein Isoforms, Transgenes, Dental Enamel, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
bronze