Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Leukemia Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Leukemia Research
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Use of IGHJ and IGHD gene mutations in analysis of immunoglobulin sequences for the prognosis of chronic lymphocytic leukemia

Authors: Cindy E H, Lee; Katherine J L, Jackson; William A, Sewell; Andrew M, Collins;

Use of IGHJ and IGHD gene mutations in analysis of immunoglobulin sequences for the prognosis of chronic lymphocytic leukemia

Abstract

The level of somatic point mutation in immunoglobulin genes is an important prognostic indicator for patients with chronic lymphocytic leukemia (CLL). Mutation analysis presently focuses solely upon the heavy chain IGHV gene, however mutation is a stochastic process that also targets IGHD and IGHJ genes. Here, we evaluate the completeness and reliability of the reported IGHJ gene repertoire, and demonstrate the likely consequences of the inclusion of IGHD and IGHJ mutations in CLL analysis, using a dataset of 607 sequences. Inclusion of these mutations would lead to the re-classification of many sequences, which should significantly improve the prognostic value of mutation analysis.

Related Organizations
Keywords

Immunoglobulin delta-Chains, Computational Biology, Prognosis, Leukemia, Lymphocytic, Chronic, B-Cell, Gene Frequency, Mutation, Humans, Immunoglobulin Joining Region, Databases, Nucleic Acid, Immunoglobulin Heavy Chains

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average