Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuronarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neuron
Article . 2000
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuron
Article . 2000 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Neuron
Article . 2001
versions View all 5 versions

Cell Migration from the Ganglionic Eminences Is Required for the Development of Hippocampal GABAergic Interneurons

Authors: Pleasure, Samuel J.; Anderson, Stewart; Hevner, Robert; Bagri, Anil; Marin, Oscar; Lowenstein, Daniel H.; Rubenstein, John L.R.;

Cell Migration from the Ganglionic Eminences Is Required for the Development of Hippocampal GABAergic Interneurons

Abstract

GABAergic interneurons have major roles in hippocampal function and dysfunction. Here we provide evidence that, in mice, virtually all of these cells originate from progenitors in the basal telencephalon. Immature interneurons tangentially migrate from the basal telencephalon through the neocortex to take up their final positions in the hippocampus. Disrupting differentiation in the embryonic basal telencephalon (lateral and medial ganglionic eminences) through loss of Dlx1/2 homeobox function blocks the migration of virtually all GABAergic interneurons to the hippocampus. On the other hand, disrupting specification of the medial ganglionic eminence through loss of Nkx2.1 homeobox function depletes the hippocampus of a distinct subset of hippocampal interneurons. Loss of hippocampal interneurons does not appear to have major effects on the early development of hippocampal projection neurons nor on the pathfinding of afferrent tracts.

Keywords

Telencephalon, Calbindins, Neuroscience(all), Thyroid Nuclear Factor 1, Hippocampus, Mice, Nerve Fibers, S100 Calcium Binding Protein G, Cell Movement, Fetal Tissue Transplantation, Interneurons, Animals, Entorhinal Cortex, Brain Tissue Transplantation, Cells, Cultured, gamma-Aminobutyric Acid, Fluorescent Dyes, Homeodomain Proteins, Nuclear Proteins, Mice, Mutant Strains, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    311
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 33
  • 33
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
311
Top 10%
Top 1%
Top 1%
33
Green
hybrid