Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Circulation Research
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Adenosine Receptor–Mediated Adhesion of Endothelial Progenitors to Cardiac Microvascular Endothelial Cells

Authors: Sergey, Ryzhov; Nataliya V, Solenkova; Anna E, Goldstein; Mathias, Lamparter; Todd, Fleenor; Pampee P, Young; James P, Greelish; +5 Authors

Adenosine Receptor–Mediated Adhesion of Endothelial Progenitors to Cardiac Microvascular Endothelial Cells

Abstract

Intracoronary delivery of endothelial progenitor cells (EPCs) is an emerging concept for the treatment of cardiovascular disease. Enhancement of EPC adhesion to vascular endothelium could improve cell retention within targeted organs. Because extracellular adenosine is elevated at sites of ischemia and stimulates neovascularization, we examined the potential role of adenosine in augmenting EPC retention to cardiac microvascular endothelium. Stimulation of adenosine receptors in murine embryonic EPCs (eEPCs) and cardiac endothelial cells (cECs) rapidly, within minutes, increased eEPC adhesion to cECs under static and flow conditions. Similarly, adhesion of human adult culture-expanded EPCs to human cECs was increased by stimulation of adenosine receptors. Furthermore, adenosine increased eEPC retention in isolated mouse hearts perfused with eEPCs. We determined that eEPCs and cECs preferentially express functional A1and A2Badenosine receptor subtypes, respectively, and that both subtypes are involved in the regulation of eEPC adhesion to cECs. We documented that the interaction between P-selectin and its ligand (P-selectin glycoprotein ligand-1) plays a role in adenosine-dependent eEPC adhesion to cECs and that stimulation of adenosine receptors in cECs induces rapid cell surface expression of P-selectin. Our results suggest a role for adenosine in vasculogenesis and its potential use to stimulate engraftment in cell-based therapies.

Related Organizations
Keywords

Adenosine, Membrane Glycoproteins, Adenosine A2 Receptor Agonists, Receptor, Adenosine A1, Myocardium, Stem Cells, Vasodilator Agents, Myocardial Ischemia, Endothelial Cells, Neovascularization, Physiologic, Receptor, Adenosine A2B, Adenosine A1 Receptor Agonists, Mice, P-Selectin, Cell Adhesion, Animals, Endothelium, Vascular, Cells, Cultured, Stem Cell Transplantation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Average
Top 10%
Top 10%
bronze
Related to Research communities