Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cytokinearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cytokine
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cytokine
Article . 2003
versions View all 2 versions

VASOACTIVE INTESTINAL PEPTIDE AND PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE INHIBIT LPS-STIMULATED MIP-1α PRODUCTION AND mRNA EXPRESSION

Authors: David, Pozo; Juan M, Guerrero; Juan R, Calvo;

VASOACTIVE INTESTINAL PEPTIDE AND PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE INHIBIT LPS-STIMULATED MIP-1α PRODUCTION AND mRNA EXPRESSION

Abstract

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are neuropeptides with immunomodulatory properties, including the regulation of several proinflammatory mediators. Such mediators, for example chemokines, influence trafficking of inflammatory cells and contribute to shaping the immune response. In the present work, we studied the effect of VIP and PACAP on the CC chemokine macrophage inflammatory protein-1 alpha (MIP-1alpha) production in LPS-stimulated RAW 264.7 macrophage cell line. VIP and PACAP inhibited the production of MIP-1alpha in a dose-dependent manner and over a broad spectrum of LPS concentrations. The use of selective agonists and antagonists of VIP/PACAP receptors showed that type 1 VIP receptor (VPAC1) is the major receptor involved, but the type 2 VIP receptor (VPAC2) may be also implicated. By using selective PKA and PKC inhibitors and cAMP mimicked agents, we demonstrated a cAMP-dependent signalling pathway for the inhibitory effect of VIP/PACAP on MIP-1alpha production, although a minor non-mediated cAMP pathway was also involved. mRNA expression studies showed a down-regulation of MIP-1alpha gene expression by VIP and PACAP. Taken together, the present work strongly supports an anti-inflammatory role of VIP and PACAP by a new mechanism associated with impairment of a key component of the chemokine network.

Related Organizations
Keywords

Lipopolysaccharides, Time Factors, Dose-Response Relationship, Drug, Reverse Transcriptase Polymerase Chain Reaction, Neuropeptides, Down-Regulation, Macrophage Inflammatory Proteins, Cyclic AMP-Dependent Protein Kinases, Cell Line, Mice, Cyclic AMP, Animals, Pituitary Adenylate Cyclase-Activating Polypeptide, RNA, Messenger, Chemokines, Chemokine CCL4, Cells, Cultured, Protein Kinase C, Chemokine CCL3, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%