Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Reproductionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Reproduction
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Reproduction
Article . 2015
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Reproduction
Article . 2015
Data sources: VIRTA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2020 . Peer-reviewed
Data sources: Research.fi
Reproduction
Article . 2015 . Peer-reviewed
Data sources: Crossref
Reproduction
Article . 2016
versions View all 5 versions

KIF1-binding protein interacts with KIF3A in haploid male germ cells

Authors: Lehti Mari Susanna; Kotaja Noora Ottiilia; Sironen Anu; Lehti Mari;

KIF1-binding protein interacts with KIF3A in haploid male germ cells

Abstract

Male fertility relies on the production of functional spermatozoa. Spermatogenesis is a complex differentiation process that is characterized by meiosis and dramatic morphogenesis of haploid cells. Spermatogenesis involves active changes in the microtubular network to support meiotic divisions, cell polarization, the reshaping of the nucleus, and the formation of a flagellum. Previously, we have demonstrated that a microtubule-based anterograde transport motor protein KIF3A is required for the sperm tail formation and nuclear shaping during spermatogenesis. In this study, we show that KIF3A interacts with a KIF1-binding protein (KBP) in the mouse testis. We have characterized the expression and localization pattern of KBP during spermatogenesis and localized both KIF3A and KBP in the cytoplasm of round spermatids and manchette of elongating spermatids. Interestingly, KBP localized also in the late chromatoid body (CB) of elongating spermatids, whose function involves intracellular movement and association with the microtubular network. Altogether our results suggest a role for KBP in spermatid elongation and in the function of the late CB.

Keywords

Male, Kinesins, Haploidy, ta3111, mehiläistalous, Testis, Animals, Protein Isoforms, KIF3A, Spermatogenesis, Mice, Knockout, Kotieläintuotanto, ta1184, riistanhoito, chromatoid body, Spermatids, spermatogenesis, kalatalous, Carrier Proteins, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
bronze