Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2004 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Dlx3 Transcriptional Regulation of Osteoblast Differentiation: Temporal Recruitment of Msx2, Dlx3, and Dlx5 Homeodomain Proteins to Chromatin of the Osteocalcin Gene

Authors: Hassan, Mohammad Q.; Javed, Amjad; Morasso, Maria I.; Karlin, Jeremy; Montecino, Martin A.; Van Wijnen, Andre J.; Stein, Gary S.; +2 Authors

Dlx3 Transcriptional Regulation of Osteoblast Differentiation: Temporal Recruitment of Msx2, Dlx3, and Dlx5 Homeodomain Proteins to Chromatin of the Osteocalcin Gene

Abstract

Genetic studies show that Msx2 and Dlx5 homeodomain (HD) proteins support skeletal development, but null mutation of the closely related Dlx3 gene results in early embryonic lethality. Here we find that expression of Dlx3 in the mouse embryo is associated with new bone formation and regulation of osteoblast differentiation. Dlx3 is expressed in osteoblasts, and overexpression of Dlx3 in osteoprogenitor cells promotes, while specific knock-down of Dlx3 by RNA interference inhibits, induction of osteogenic markers. We characterized gene regulation by Dlx3 in relation to that of Msx2 and Dlx5 during osteoblast differentiation. Chromatin immunoprecipitation assays revealed a molecular switch in HD protein association with the bone-specific osteocalcin (OC) gene. The transcriptionally repressed OC gene was occupied by Msx2 in proliferating osteoblasts, while Dlx3, Dlx5, and Runx2 were recruited postproliferatively to initiate transcription. Dlx5 occupancy increased over Dlx3 in mature osteoblasts at the mineralization stage of differentiation, coincident with increased RNA polymerase II occupancy. Dlx3 protein-DNA interactions stimulated OC promoter activity, while Dlx3-Runx2 protein-protein interaction reduced Runx2-mediated transcription. Deletion analysis showed that the Dlx3 interacting domain of Runx2 is from amino acids 376 to 432, which also include the transcriptionally active subnuclear targeting sequence (376 to 432). Thus, we provide cellular and molecular evidence for Dlx3 in regulating osteoprogenitor cell differentiation and for both positive and negative regulation of gene transcription. We propose that multiple HD proteins in osteoblasts constitute a regulatory network that mediates development of the bone phenotype through the sequential association of distinct HD proteins with promoter regulatory elements.

Keywords

Homeodomain Proteins, 570, Bone Development, Osteoblasts, Stem Cells, Molecular Sequence Data, Osteocalcin, 610, Gene Expression Regulation, Developmental, Cell Differentiation, Embryo, Mammalian, Chromatin, Cell Line, Rats, DNA-Binding Proteins, Mice, Animals, Humans, RNA Interference, Amino Acid Sequence, Promoter Regions, Genetic, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    255
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
255
Top 1%
Top 1%
Top 1%
bronze