Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EMBO Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EMBO Reports
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EMBO Reports
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
EMBO Reports
Article . 2003
versions View all 3 versions

Trithorax interacts with type 1 serine/threonine protein phosphatase in Drosophila

Authors: Rudenko, Andrey; Bennett, Daimark; Alphey, Luke;

Trithorax interacts with type 1 serine/threonine protein phosphatase in Drosophila

Abstract

The catalytic subunit of type 1 serine/threonine protein phosphatase (PP1c) was shown to bind trithorax (TRX) in the yeast two‐hybrid system. Interaction between PP1c and TRX was confirmed in vivo by co‐immunoprecipitation from Drosophila extracts. An amino‐terminal fragment of TRX, containing a putative PP1c‐binding motif, was shown to be sufficient for binding to PP1c by in vitro glutathione S‐transferase pull‐down assays using recombinant protein and fly extracts expressing epitope tagged PP1c. Disruption of the PP1c‐binding motif abolished binding, indicating that this motif is necessary for interaction with PP1. On polytene chromosomes, PP1c is found at many discrete bands, which are widely distributed along the chromosomes. Many of the sites that stain strongly for PP1c correspond to sites of TRX, consistent with a physical association of PP1c with chromatin‐bound TRX. Homeotic transformations of haltere to wing in flies mutant for trx are dominantly suppressed by PP1c mutants, indicating that PP1c not only binds TRX, but is a physiologically relevant regulator of TRX function in vivo.

Country
United Kingdom
Related Organizations
Keywords

Recombinant Fusion Proteins, Genes, Homeobox, Genes, Insect, Chromosomes, DNA-Binding Proteins, Isoenzymes, Protein Subunits, Drosophila melanogaster, Protein Phosphatase 1, Two-Hybrid System Techniques, Protein Interaction Mapping, Morphogenesis, Phosphoprotein Phosphatases, Animals, Drosophila Proteins, Wings, Animal, Phosphorylation, Protein Processing, Post-Translational, Protein Binding, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Average
Top 10%
gold