Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes and Immunityarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes and Immunity
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Genes and Immunity
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Conditioning the genome identifies additional diabetes resistance loci in Type I diabetes resistant NOR/Lt mice

Authors: Reifsnyder, P C; Li, R; Silveira, P A; Churchill, G; Serreze, D V; Leiter, E H;

Conditioning the genome identifies additional diabetes resistance loci in Type I diabetes resistant NOR/Lt mice

Abstract

While sharing the H2g7 MHC and many other important Type I diabetes susceptibility (Idd) genes with NOD mice, the NOR strain remains disease free due to resistance alleles within the approximately 12% portion of their genome that is of C57BLKS/J origin. Previous F2 segregation analyses indicated multiple genes within the 'Idd13' locus on Chromosome 2 provide the primary component of NOR diabetes resistance. However, it was clear other genes also contribute to NOR diabetes resistance, but were difficult to detect in the original segregation analyses because they were relatively weak compared to the strong Idd13 protection component. To identify these further genetic components of diabetes resistance, we performed a new F2 segregation analyses in which NOD mice were outcrossed to a 'genome-conditioned' NOR stock in which a large component of Idd13-mediated resistance was replaced with NOD alleles. These F2 segregation studies combined with subsequent congenic analyses confirmed the presence of additional NOR resistance genes on Chr. 1 and Chr. 4, and also potentially on Chr. 11. These findings emphasize the value for diabetes gene discovery of stratifying not only MHC loci conferring the highest relative risk but also as many as possible of the non-MHC loci presumed to contribute significantly.

Keywords

570, Genome, Genetic-Predisposition-to-Disease, Mice-Congenic, 610, Chromosome Mapping, Mice-Inbred-NOD, Mice, Mice, Congenic, Diabetes Mellitus, Type 1, Mice, Inbred NOD, Chromosome-Mapping, Animals, Female, Genetic Predisposition to Disease, Alleles, Diabetes-Mellitus-Type-1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Average
Top 10%
bronze