Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Angewandte Chemie In...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie International Edition
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Angewandte Chemie
Article . 2020 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Characterization of [2Fe–2S]‐Cluster‐Bridged Protein Complexes and Reaction Intermediates by use of Native Mass Spectrometric Methods

Authors: Mengxuan Jia; Sambuddha Sen; Christine Wachnowsky; Insiya Fidai; James A. Cowan; Vicki H. Wysocki;

Characterization of [2Fe–2S]‐Cluster‐Bridged Protein Complexes and Reaction Intermediates by use of Native Mass Spectrometric Methods

Abstract

AbstractMany iron–sulfur proteins involved in cluster trafficking form [2Fe–2S]‐cluster‐bridged complexes that are often challenging to characterize because of the inherent instability of the cluster at the interface. Herein, we illustrate the use of fast, online buffer exchange coupled to a native mass spectrometry (OBE nMS) method to characterize [2Fe–2S]‐cluster‐bridged proteins and their transient cluster‐transfer intermediates. The use of this mechanistic and protein‐characterization tool is demonstrated with holo glutaredoxin 5 (GLRX5) homodimer and holo GLRX5:BolA‐like protein 3 (BOLA3) heterodimer. Using the OBE nMS method, cluster‐transfer reactions between the holo‐dimers and apo‐ferredoxin (FDX2) are monitored, and intermediate [2Fe–2S] species, such as (FDX2:GLRX5:[2Fe–2S]:GSH) and (FDX2:BOLA3:GLRX5:[2Fe–2S]:GSH) are detected. The OBE nMS method is a robust technique for characterizing iron–sulfur‐cluster‐bridged protein complexes and transient iron–sulfur‐cluster transfer intermediates.

Keywords

Iron-Sulfur Proteins, Mitochondrial Proteins, Protein Multimerization, Protein Structure, Quaternary, Glutaredoxins, Mass Spectrometry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
bronze