Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2007 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2007
versions View all 2 versions

Distinct Roles for Steroidogenic factor 1 and Desert hedgehog Pathways in Fetal and Adult Leydig Cell Development

Authors: Susan Y, Park; Minghan, Tong; J Larry, Jameson;

Distinct Roles for Steroidogenic factor 1 and Desert hedgehog Pathways in Fetal and Adult Leydig Cell Development

Abstract

Testicular Leydig cells produce testosterone and provide the hormonal environment required for male virilization and spermatogenesis. In utero, fetal Leydig cells (FLCs) are necessary for the development of the Wolffian duct and male external genitalia. Steroidogenic factor 1 (Sf1) is a transcriptional regulator of hormone biosynthesis genes, thus serving a central role in the Leydig cell. Desert hedgehog (Dhh), a Sertoli cell product, specifies the FLC lineage in the primordial gonad through a paracrine signaling mechanism. Postnatally, FLCs are replaced in the testis by morphologically distinct adult Leydig cells (ALCs). To study a putative interaction between Sf1 and Dhh, we crossed Sf1 heterozygous mutant mice with Dhh homozygous null mice to test the function of these two genes in vivo. All of the compound Sf1+/−; Dhh−/− mutants failed to masculinize and were externally female. However, embryonic gonads contained anastomotic testis cords with Sertoli cells and germ cells, indicating that sex reversal was not attributable to a fate switch of the early gonad. Instead, external feminization was attributable to the absence of differentiated FLCs in XY compound mutant mice. ALCs also failed to develop, suggesting either a dependence of ALCs on the prenatal establishment of Leydig cell precursors or that Sf1 and Dhh are both required for ALC maturation. In summary, this study provides genetic evidence that combinatorial expression of the paracrine factor Dhh and nuclear transcription factor Sf1 is required for Leydig cell development.

Related Organizations
Keywords

Anti-Mullerian Hormone, Homeodomain Proteins, Male, Sex Differentiation, Disorders of Sex Development, Gene Expression Regulation, Developmental, Leydig Cells, Mitosis, Receptors, Cytoplasmic and Nuclear, Mice, Inbred Strains, Mice, Mutant Strains, Mice, Germ Cells, Pregnancy, Mesonephros, Animals, Female, Hedgehog Proteins, Cholesterol Side-Chain Cleavage Enzyme, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%
bronze