Epidermolysis bullosa: hereditary skin fragility diseases as paradigms in cell biology
doi: 10.1007/bf00370710
pmid: 7537032
Epidermolysis bullosa: hereditary skin fragility diseases as paradigms in cell biology
Recent research into the molecular basis of epidermolysis bullosa has provided a unique insight into a variety of mechanisms in normal cell biology, such as cell-matrix interactions, and has uncovered an excellent model for studies on keratin intermediate filaments. The simplex forms of epidermolysis bullosa are caused by mutations in the genes for the basal epidermal keratins, K5 and K14. Most mutations affect highly conserved parts of the molecules, illustrating their importance in normal keratin filament assembly and integrity. Mutations in corresponding regions of the differentiation-associated keratins, K1 and K10 can also occur in epidermolytic ichthyosis. Both recessive and dominant forms of dystrophic epidermolysis bullosa result from mutations in an anchoring fibril collagen gene, COL7A1. Junctional epidermolysis bullosa is caused by mutations in the genes encoding different chains of the novel laminin isoform, nicein/kalinin, also known as laminin 5, which is associated with the anchoring filament-hemidesmosome complex of the basement membrane zone. These recent findings strengthen the evidence for the role of nicein/kalinin and type VII collagen in adherence and stabilization of the dermo-epidermal junction.
- Guy's and St Thomas' NHS Foundation Trust United Kingdom
- King's College Hospital NHS Foundation Trust United Kingdom
- St. John's University United States
- St Thomas' Hospital United Kingdom
Mutation, Animals, Humans, Keratins, Collagen, Epidermolysis Bullosa
Mutation, Animals, Humans, Keratins, Collagen, Epidermolysis Bullosa
4 Research products, page 1 of 1
- 1994IsAmongTopNSimilarDocuments
- 1994IsAmongTopNSimilarDocuments
- 1994IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
