Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Oncogenic Shp2 disturbs microtubule regulation to cause HDAC6-dependent ERK hyperactivation

Authors: S-C, Tien; Z-F, Chang;

Oncogenic Shp2 disturbs microtubule regulation to cause HDAC6-dependent ERK hyperactivation

Abstract

Deregulation of Shp2, a non-receptor tyrosine phosphatase, causes hyperactivation of extracellular signal-regulated kinase (ERK), leading to growth abnormality. Here, we show that inhibition of RhoA-Dia is sufficient to upregulate ERK activation in epithelial cells. Oncogenic Shp2 expression attenuates RhoA-Dia signaling, by which microtubule (MT) is destabilized with reduced level of acetylation. Either MT stabilization, silencing of histone deacetylase 6 (HDAC6) or enforcing RhoA-Dia signal prevents oncogenic Shp2-induced ERK hyperactivation. We provide evidence that downregulation of RhoA-Dia-EB1 pathway by oncogenic Shp2 leads to HDAC6-mediated reduction in MT acetylation, in turn affecting ERK regulation. In response to serum stimulation, cells expressing wild-type Shp2 display transient ERK activation. In contrast, cells expressing oncogenic Shp2 have prolonged ERK activation. HDAC6 inhibition diminishes sustained activation of ERK and slows down the growth of these cells. Likewise, in human cancer cells, blocking Shp2 increases MT acetylation and decreases ERK phosphorylation, which are reversed by inhibition of Dia. As such, HDAC6 inhibition in these cells also reduces ERK activity. Our findings link MT regulation by HDAC6 to oncogenic Shp2 and ERK regulation, implicating the therapeutic potential of HDAC6 inhibitor in diseases involving Shp2 deregulation.

Keywords

Protein Stability, Acetylation, Protein Tyrosine Phosphatase, Non-Receptor Type 11, Histone Deacetylase 6, Microtubules, Histone Deacetylases, Cell Line, Enzyme Activation, Cell Line, Tumor, Neoplasms, Animals, Humans, Gene Silencing, Extracellular Signal-Regulated MAP Kinases, rhoA GTP-Binding Protein, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Average
bronze