Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Biochimica Polo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Acta Biochimica Polonica
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Consequences of the loss of the Grainyhead-like 1 gene for renal gene expression, regulation of blood pressure and heart rate in a mouse model

Authors: Magdalena, Pawlak; Agnieszka, Walkowska; Michał, Mlącki; Jelena, Pistolic; Tomasz, Wrzesiński; Vladimir, Benes; Stephen M, Jane; +3 Authors

Consequences of the loss of the Grainyhead-like 1 gene for renal gene expression, regulation of blood pressure and heart rate in a mouse model

Abstract

The Grainyhead-like 1 (GRHL1) transcription factor is tissue-specific and is very highly expressed in the kidney. In humans the GRHL1 gene is located at the chromosomal position 2p25. A locus conferring increased susceptibility to essential hypertension has been mapped to 2p25 in two independent studies, but the causative gene has never been identified. Furthermore, a statistically significant association has been found between a polymorphism in the GRHL1 gene and heart rate regulation. The aim of our study was to investigate the physiological consequences of Grhl1 loss in a mouse model and ascertain whether Grhl1 may be involved in the regulation of blood pressure and heart rate.In our research we employed the Grhl1 "knock-out" mouse strain. We analyzed renal gene expression, blood pressure and heart rate in the Grhl1-null mice in comparison with their "wild-type" littermate controls. Most important results: The expression of many genes is altered in the Grhl1(-/-) kidneys. Some of these genes have previously been linked to blood pressure regulation. Despite this, the Grhl1-null mice have normal blood pressure and interestingly, increased heart rate.Our work did not discover any new evidence to suggest any involvement of Grhl1 in blood pressure regulation. However, we determined that the loss of Grhl1 influences the regulation of heart rate in a mouse model.

Keywords

Mice, Knockout, Base Sequence, Dopamine, Molecular Sequence Data, Blood Pressure, Kidney, Mice, Inbred C57BL, Repressor Proteins, Disease Models, Animal, Gene Expression Regulation, Heart Rate, Hypertension, Animals, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Average
gold