Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Hypertension...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Hypertension Reports
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Lipoprotein lipase-derived fatty acids: Physiology and dysfunction

Authors: Jee Lee; Ira J. Goldberg;

Lipoprotein lipase-derived fatty acids: Physiology and dysfunction

Abstract

Under normal circumstances, most energy substrate used for heart contraction derives from fatty acids in the form of nonesterified fatty acids bound to albumin or fatty acids derived from lipolysis of lipoprotein-bound triglyceride by lipoprotein lipase (LpL). By creating LpL knockout mice (hLpL0), we learned that loss of cardiac LpL leads to myocardial dysfunction; therefore, neither nonesterified fatty acids nor increased glucose metabolism can replace LpL actions. hLpL0 mice do not survive abdominal aortic constriction and they develop more heart failure with hypertension. Conversely, we created a mouse overexpressing cardiomyocyte-anchored LpL. This transgene produced cardiac lipotoxicity and dilated cardiomyopathy. Methods to alter this phenotype and the causes of other models of lipotoxicity are currently being studied and will provide further insight into the physiology of lipid metabolism in the heart.

Related Organizations
Keywords

Mice, Lipoproteins, Fatty Acids, Models, Animal, Animals, Heart

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Average
Top 10%