Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Gastrointestinal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Gastrointestinal and Liver Physiology
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Small intestinal MUC2 synthesis in human preterm infants

Authors: Schaart, Maaike W.; de Bruijn, Adrianus C. J. M.; Schierbeek, Henk; Tibboel, Dick; Renes, Ingrid B.; van Goudoever, Johannes B.;

Small intestinal MUC2 synthesis in human preterm infants

Abstract

Mucin 2 (MUC2) is the structural component of the intestinal protective mucus layer, which contains high amounts of threonine in its peptide backbone. MUC2 synthesis rate might be a potential parameter for intestinal barrier function. In this study, we aimed to determine whether systemic threonine was used for small intestinal MUC2 synthesis and to calculate the MUC2 fractional synthetic rate (FSR) in human preterm infants. Seven preterm infants with an enterostomy following bowel resection for necrotizing enterocolitis received intravenous infusion of [U-13C]threonine to determine incorporation of systemic threonine into secreted MUC2 in intestinal outflow fluid. Small intestinal MUC2 was isolated using cesium chloride gradient ultracentrifugation and gravity gel filtration chromatography. MUC2-containing fractions were identified by SDS-PAGE/periodic acid-Schiff staining and Western blot analysis and were subsequently pooled. Isotopic enrichment of threonine, measured in MUC2 using gas chromatography isotopic ratio mass spectrometry, was used to calculate the FSR of MUC2. Systemically derived threonine was indeed incorporated into small intestinal MUC2. Median FSR of small intestinal MUC2 was 67.2 (44.3–103.9)% per day. Systemic threonine is rapidly incorporated into MUC2 in the small intestine of preterm infants, and thereby MUC2 has a very high synthesis rate.

Keywords

Male, Threonine, Carbon Isotopes, Mucin-2, Ileostomy, EMC MM-03-54-04-A, Infant, Newborn, Jejunostomy, Gestational Age, Kinetics, Enteral Nutrition, Enterocolitis, Necrotizing, Intestine, Small, Humans, Infusions, Intravenous, EMC MGC-02-53-01-A, Infant, Premature

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
bronze