Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2013
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions

A Novel Interplay between Rap1 and PKA Regulates Induction of Angiogenesis in Prostate Cancer

Authors: Menon, Jyotsana; Doebele, Robert C.; Gomes, Suzana; Bevilacqua, Elena; Reindl, Katie M.; Rosner, Marsha Rich;

A Novel Interplay between Rap1 and PKA Regulates Induction of Angiogenesis in Prostate Cancer

Abstract

Angiogenesis inhibition is an important therapeutic strategy for advanced stage prostate cancer. Previous work from our laboratory showed that sustained stimulation of Rap1 by 8-pCPT-2'-O-Me-cAMP (8CPT) via activation of Epac, a Rap1 GEF, or by expression of a constitutively active Rap1 mutant (cRap1) suppresses endothelial cell chemotaxis and subsequent angiogenesis. When we tested this model in the context of a prostate tumor xenograft, we found that 8CPT had no significant effect on prostate tumor growth alone. However, in cells harboring cRap1, 8CPT dramatically inhibited not only prostate tumor growth but also VEGF expression and angiogenesis within the tumor microenvironment. Subsequent analysis of the mechanism revealed that, in prostate tumor epithelial cells, 8CPT acted via stimulation of PKA rather than Epac/Rap1. PKA antagonizes Rap1 and hypoxic induction of 1α protein expression, VEGF production and, ultimately, angiogenesis. Together these findings provide evidence for a novel interplay between Rap1, Epac, and PKA that regulates tumor-stromal induction of angiogenesis.

Keywords

Male, Vascular Endothelial Growth Factor A, 570, Science, Blotting, Western, 610, Enzyme-Linked Immunosorbent Assay, Real-Time Polymerase Chain Reaction, Mice, Cell Line, Tumor, Cyclic AMP, Animals, Guanine Nucleotide Exchange Factors, Humans, Analysis of Variance, Neovascularization, Pathologic, Reverse Transcriptase Polymerase Chain Reaction, Q, R, Prostatic Neoplasms, rap1 GTP-Binding Proteins, Cyclic AMP-Dependent Protein Kinases, Immunohistochemistry, Medicine, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
Green
gold