Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Genetic...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Genetics
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Genetics
Article . 2021
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/23...
Other literature type . 2021
Data sources: Datacite
https://dx.doi.org/10.60692/be...
Other literature type . 2021
Data sources: Datacite
versions View all 6 versions

Structural Analysis of SARS-CoV-2 ORF8 Protein: Pathogenic and Therapeutic Implications

التحليل الهيكلي لبروتين ORF8 لفيروس كورونا 2 المرتبط بمتلازمة الجهاز التنفسي الحادة الوخيمة: الآثار المرضية والعلاجية
Authors: Antonio Valcarcel; Antonio Bensussen; Elena R. Álvarez-Buylla; Elena R. Álvarez-Buylla; José Díaz;

Structural Analysis of SARS-CoV-2 ORF8 Protein: Pathogenic and Therapeutic Implications

Abstract

Current therapeutic strategies and vaccines against SARS-CoV-2 are mainly focused on the Spike protein despite there are other viral proteins with important roles in COVID-19 pathogenicity. For example, ORF8 restructures vesicular trafficking in the host cell, impacts intracellular immunity through the IFN-I signaling, and growth pathways through the mitogen-activated protein kinases (MAPKs). In this mini-review, we analyze the main structural similarities of ORF8 with immunological molecules such as IL−1, contributing to the immunological deregulation observed in COVID-19. We also propose that the blockage of some effector functions of ORF8 with Rapamycin, such as the mTORC1 activation through MAPKs 40 pathway, with Rapamycin, can be a promising approach to reduce COVID-19 mortality.

Keywords

Cell biology, Kinase, Innate Immunity to Viral Infection, Immunology, Infectious disease (medical specialty), QH426-470, Coronavirus Disease 2019 Research, FOS: Health sciences, Signal transduction, spike protein, COVID-19 therapeutics, Agricultural and Biological Sciences, Virology, Health Sciences, Genetics, structural biology, Disease, Viral Diseases in Livestock and Poultry, mTORC1, Biology, Internal medicine, Immunology and Microbiology, SARS-CoV-2, FOS: Clinical medicine, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Immunity, COVID-19, Life Sciences, ORF8, Outbreak, Intracellular, Coronavirus disease 2019 (COVID-19), Infectious Diseases, Immune system, Effector, PI3K/AKT/mTOR pathway, Medicine, Animal Science and Zoology, 2019-20 coronavirus outbreak

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Top 10%
Average
Top 10%
Green
gold