Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Stretch-Induced Mitogen-Activated Protein Kinase Activation in Lung Fibroblasts Is Independent of Receptor Tyrosine Kinases

Authors: Francis, Boudreault; Daniel J, Tschumperlin;

Stretch-Induced Mitogen-Activated Protein Kinase Activation in Lung Fibroblasts Is Independent of Receptor Tyrosine Kinases

Abstract

Lung growth and remodeling are modulated by mechanical stress, with fibroblasts thought to play a leading role. Little mechanistic information is available about how lung fibroblasts respond to mechanical stress. We exposed cultured lung fibroblasts to tonic stretch and measured changes in phosphorylation status of mitogen-activated protein kinases (MAPKs), selected receptor tyrosine kinases (RTKs), and phospholipase Cgamma1 (PLCgamma1) and activation of the small G-protein Ras. Human lung fibroblasts (LFs) were seeded on matrix-coated silicone membranes and exposed to equibiaxial 10 to 40% static stretch or 20% contraction. LFs were stimulated with EGF, FGF2, or PDGF-BB or exposed to stretch in the presence of inhibitors of EGFR (AG1478), FGFR (PD173074), and PDGFR (AG1296). Phospho-MAPK, phospho-RTK, and phospho-PLCgamma1 levels were measured by Western blotting. Active GTP-Ras was quantified by immunoblotting after pull-down with a glutathione S-transferase-Raf-RBD construct. Normalized p-ERK1/2, p-JNK, and p-p38 levels increased after stretch but not contraction. Ligands to RTKs broadly stimulated MAPKs, with the responses to EGF and PDGF most similar to stretch in terms of magnitude and rank order of MAPK responses. Stretching cells failed to elicit measurable activation of EGFR, FGFR (FRS2alpha phosphorylation), or PDGFR. Potent inhibitors of the kinase activity of each receptor failed to attenuate stretch-induced MAPK activation. PLCgamma1 and Ras, prominent effectors downstream of RTKs, were not activated by stretch. Our findings demonstrate that MAPKs are potently activated by stretch in lung fibroblasts, but, in contrast to stress responses observed in other cell types, RTKs are not necessary for stretch-induced MAPK activation in LFs.

Related Organizations
Keywords

Time Factors, MAP Kinase Signaling System, Receptor Protein-Tyrosine Kinases, Fibroblasts, Models, Biological, Receptors, Fibroblast Growth Factor, Gene Expression Regulation, Enzymologic, Enzyme Activation, ErbB Receptors, Humans, Receptors, Platelet-Derived Growth Factor, Stress, Mechanical, Phosphorylation, Lung, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Average
Average
Top 10%
bronze