Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion

Authors: Guoliang, Fang; Dachuan, Zhang; Huilong, Yin; Lu, Zheng; Xiaolin, Bi; Li, Yuan;

Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion

Abstract

ABSTRACT Centrosome cohesion, mostly regarded as a proteinaceous linker between parental centrioles, ensures that the interphase centrosome(s) function as a single microtubule-organizing center. Impairment of centrosome cohesion leads to the splitting of centrosomes. Although the list of cohesion proteins is growing, the precise composition and regulation of centrosome cohesion are still largely unknown. In this study, we show that the centriolar protein centlein (also known as CNTLN) localizes to the proximal ends of the centrioles and directly interacts with both C-Nap1 (also known as Cep250) and Cep68. Moreover, centlein complexes with C-Nap1 and Cep68 at the proximal ends of centrioles during interphase and functions as a molecular link between C-Nap1 and Cep68. Depletion of centlein impairs recruitment of Cep68 to the centrosomes and, in turn, results in centrosome splitting. Both centlein and Cep68 are novel Nek2A substrates. Collectively, our data demonstrate that centrosome cohesion is maintained by the newly identified complex of C-Nap1–centlein–Cep68.

Related Organizations
Keywords

Centrosome, Chromosomal Proteins, Non-Histone, Cell Cycle, Nuclear Proteins, Cell Cycle Proteins, Protein Serine-Threonine Kinases, Rats, Mice, Protein Transport, HEK293 Cells, Protein Interaction Mapping, Animals, Humans, NIMA-Related Kinases, Poly-ADP-Ribose Binding Proteins, Microtubule-Associated Proteins, Centrioles, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
bronze