Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cardiovascular Resea...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2013
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2013
Data sources: IRIS Cnr
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cardiovascular Research
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 8 versions

The G-protein-coupled receptor APJ is expressed in the second heart field and regulates Cerberus–Baf60c axis in embryonic stem cell cardiomyogenesis

Authors: D'Aniello C; Fiorenzano A; Iaconis S; Liguori GL; Andolfi G; Cobellis G; Fico A; +1 Authors

The G-protein-coupled receptor APJ is expressed in the second heart field and regulates Cerberus–Baf60c axis in embryonic stem cell cardiomyogenesis

Abstract

Mammalian cardiomyogenesis occurs through a multistep process that requires a complex network of tightly regulated extracellular signals, which integrate with the genetic and epigenetic machinery to maintain, expand, and regulate the differentiation of cardiac progenitor cells. Pluripotent embryonic stem cells (ESCs) recapitulate many aspects of development, and have provided an excellent opportunity to dissect the molecular mechanisms underlying cardiomyogenesis, which is still incompletely defined.We provide new in vivo evidence that the G-protein-coupled receptor angiotensin receptor-like 1 (Apj) is expressed in the mesodermal cells of the second heart field, a population of cardiac progenitors that give rise to a major part of the definitive heart. By combining loss-and-gain of function studies in mouse ESCs, we show that Apj (i) controls the balance between proliferation and cardiovascular differentiation, (ii) regulates the Nodal/Bone Morphogenetic Protein antagonist Cerberus and the Baf60c/Smarcd3 subunit of the Brg1/Brm-associated factors (BAF) chromatin-remodelling complex.We propose a model in which Apj controls a regulatory Cerberus-Baf60c pathway in pluripotent stem cell cardiomyogenesis, and speculate that this regulatory circuit may regulate cardiac progenitor cell behaviour.

Keywords

Chromosomal Proteins, Non-Histone, Nodal Protein, G-protein-coupled receptors, Second heart field, Myocardial progenitors, Muscle Proteins, Stem cells, -, Smad2 Protein, Epigenetic; G-protein-coupled receptors; Myocardial progenitors; Second heart field; Stem cells, Receptors, G-Protein-Coupled, Mice, Animals, Myocytes, Cardiac, Cyclin-Dependent Kinase Inhibitor p57, Cells, Cultured, Embryonic Stem Cells, Cell Proliferation, Apelin Receptors, Epigenetic, Proteins, Cell Differentiation, Heart, Epigenetic; G-protein-coupled receptors; Myocardial progenitors; Second heart field; Stem cells; Animals; Apelin Receptors; Bone Morphogenetic Proteins; Cell Differentiation; Cell Proliferation; Cells, Cultured; Chromosomal Proteins, Non-Histone; Cyclin-Dependent Kinase Inhibitor p57; Embryonic Stem Cells; Heart; Mice; Muscle Proteins; Myocytes, Cardiac; Nodal Protein; Proteins; Receptors, G-Protein-Coupled; Signal Transduction; Smad2 Protein, Bone Morphogenetic Proteins, Cytokines, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Top 10%
Average
Top 10%
bronze