Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Biology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Interactions between detoxification mechanisms and excretion in Malpighian tubules ofDrosophila melanogaster

Authors: Sarah, Chahine; Michael J, O'Donnell;

Interactions between detoxification mechanisms and excretion in Malpighian tubules ofDrosophila melanogaster

Abstract

SUMMARYInsects have long been known to excrete toxins via the Malpighian (renal) tubules. In addition, exposure to natural or synthetic toxins is commonly associated with increases in the activity of detoxification enzymes such as the P450 monoxygenases (P450s) and the glutathione-S-transferases (GSTs). We examined the links between mechanisms for detoxification and excretion in adult Drosophila melanogaster using functional assays and measurements of changes in gene expression by quantitative reverse transcriptase PCR in response to dietary exposure to compounds known to alter activity or gene expression of P450s and GSTs. Dietary exposure to phenol, which alters gene expression for multiple GSTs after seven to 10 generations, was also associated with an increase (more than twofold) in secretion of the organic anion methotrexate (MTX) by isolated tubules. Dietary exposure to the insecticide synergist piperonyl butoxide (PBO) was associated with reduced expression of two P450 genes (Cyp4e2, Cyp4p1) and two GST genes (GstD1, GstD5) in the tubules, as well as increased expression of Cyp12d1 and GstE1. Thin layer chromatographic analysis of fluid secreted by isolated tubules indicated that dietary exposure to PBO resulted in increased levels of an MTX metabolite. In addition, exposure to PBO altered the expression of transporter genes in the tubules, including a Drosophila multidrug resistance-associated protein, and was associated with a 73% increase in MTX secretion by isolated tubules. The results suggest that exposure of Drosophila to toxins evokes a coordinated response by the Malpighian tubules, involving both alterations in detoxification pathways as well as enhanced transport.

Related Organizations
Keywords

Phenol, Piperonyl Butoxide, Reverse Transcriptase Polymerase Chain Reaction, Biological Transport, Malpighian Tubules, Animal Feed, Gene Expression Regulation, Enzymologic, Drosophila melanogaster, Methotrexate, Cytochrome P-450 Enzyme System, Inactivation, Metabolic, Animals, Drosophila Proteins, Glutathione Transferase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%
bronze