Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Molecular...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Modulation of Polyglutamine Conformations and Dimer Formation by the N-Terminus of Huntingtin

Authors: Tim E, Williamson; Andreas, Vitalis; Scott L, Crick; Rohit V, Pappu;

Modulation of Polyglutamine Conformations and Dimer Formation by the N-Terminus of Huntingtin

Abstract

Polyglutamine expansions within different proteins are associated with nine different neurodegenerative diseases. There is growing interest in understanding the roles of flanking sequences from disease-relevant proteins in the intrinsic conformational and aggregation properties of polyglutamine. We report results from atomistic simulations and circular dichroism experiments that quantify the effect of the N-terminal 17-residue (Nt17) segment of the huntingtin protein on polyglutamine conformations and intermolecular interactions. We show that the Nt17 segment and polyglutamine domains become increasingly disordered as polyglutamine length (N) increases in Nt17-Q(N) constructs. Hydrophobic groups within Nt17 become sequestered in intramolecular interdomain interfaces. We also show that the Nt17 segment suppresses the intrinsic propensity of polyglutamine aggregation. This inhibition arises from the incipient micellar structures adopted by monomeric forms of the peptides with Nt17 segments. The degree of intermolecular association increases with increasing polyglutamine length and is governed mainly by associations between polyglutamine domains. Comparative analysis of intermolecular associations for different polyglutamine-containing constructs leads to clearer interpretations of recently published experimental data. Our results suggest a framework for fibril formation and identify roles for flanking sequences in the modulation of polyglutamine aggregation.

Related Organizations
Keywords

Models, Molecular, Huntingtin Protein, Protein Conformation, Circular Dichroism, Molecular Sequence Data, Nuclear Proteins, Nerve Tissue Proteins, In Vitro Techniques, Peptide Fragments, Protein Structure, Secondary, Humans, Thermodynamics, Computer Simulation, Protein Interaction Domains and Motifs, Amino Acid Sequence, Protein Multimerization, Peptides, Hydrophobic and Hydrophilic Interactions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    116
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
116
Top 10%
Top 10%
Top 1%
bronze