Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2006 . Peer-reviewed
Data sources: Crossref
UNC Dataverse
Article . 2006
Data sources: Datacite
versions View all 3 versions

Disruption of axo–glial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons

Authors: German P, Garcia-Fresco; Aurea D, Sousa; Anilkumar M, Pillai; Sheryl S, Moy; Jacqueline N, Crawley; Lino, Tessarollo; Jeffrey L, Dupree; +1 Authors

Disruption of axo–glial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons

Abstract

Axo–glial junctions (AGJs) play a critical role in the organization and maintenance of molecular domains in myelinated axons. Neurexin IV/Caspr1/paranodin (NCP1) is an important player in the formation of AGJs because it recruits a paranodal complex implicated in the tethering of glial proteins to the axonal membrane and cytoskeleton. Mice deficient in either the axonal protein NCP1 or the glial ceramide galactosyltransferase (CGT) display disruptions in AGJs and severe ataxia. In this article, we correlate these two phenotypes and show that both NCP1 and CGT mutants develop large swellings accompanied by cytoskeletal disorganization and degeneration in the axons of cerebellar Purkinje neurons. We also show that αII spectrin is part of the paranodal complex and that, although not properly targeted, this complex is still formed in CGT mutants. Together, these findings establish a physiologically relevant link between AGJs and axonal cytoskeleton and raise the possibility that some neurodegenerative disorders arise from disruption of the AGJs.

Keywords

Behavior, Animal, Cell Adhesion Molecules, Neuronal, Brain, Spectrin, Mice, Transgenic, Axons, Mice, N-Acylsphingosine Galactosyltransferase, Purkinje Cells, Microscopy, Electron, Transmission, Mutation, Nerve Degeneration, Animals, Neuroglia, Cytoskeleton, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 10%
Top 10%
Top 10%
bronze