Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Genetics
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

RPGR-containing protein complexes in syndromic and non-syndromic retinal degeneration due to ciliary dysfunction

Authors: Carlos A, Murga-Zamalloa; Anand, Swaroop; Hemant, Khanna;

RPGR-containing protein complexes in syndromic and non-syndromic retinal degeneration due to ciliary dysfunction

Abstract

Dysfunction of primary cilia due to mutations in cilia-centrosomal proteins is associated with pleiotropic disorders. The primary (or sensory) cilium of photoreceptors mediates polarized trafficking of proteins for efficient phototransduction. Retinitis pigmentosa GTPase regulator (RPGR) is a cilia-centrosomal protein mutated in >70% of X-linked RP cases and 10%-20% of simplex RP males. Accumulating evidence indicates that RPGR may facilitate the orchestration of multiple ciliary protein complexes. Disruption of these complexes due to mutations in component proteins is an underlying cause of associated photoreceptor degeneration. Here, we highlight the recent developments in understanding the mechanism of cilia-dependent photoreceptor degeneration due to mutations in RPGR and PGR-interacting proteins in severe genetic diseases, including retinitis pigmentosa, Leber congenital amaurosis (LCA), Joubert syndrome, and Senior-Loken syndrome, and explore the physiological relevance of photoreceptor ciliary protein complexes.

Keywords

Retinal Degeneration, Proteins, Syndrome, Models, Biological, Cytoskeletal Proteins, Mutation, Animals, Humans, Cilia, Eye Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
gold