Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Neuroscience
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Loss of the transmembrane and cytoplasmic domains of the very large G-protein-coupled receptor-1 (VLGR1 or Mass1) causes audiogenic seizures in mice

Authors: D Randy, McMillan; Perrin C, White;

Loss of the transmembrane and cytoplasmic domains of the very large G-protein-coupled receptor-1 (VLGR1 or Mass1) causes audiogenic seizures in mice

Abstract

At approximately 6300 amino acids, very large G-protein-coupled receptor-1 (VLGR1, also termed Mass1) is the largest known cell surface protein. It is expressed at high levels within the embryonic nervous system, especially the ventricular zone. A naturally occurring nonsense mutation in VLGR1, V2250X, is linked with susceptibility to audiogenic seizures in mice. Interpretation of this finding is complicated by the existence of splice and transcriptional variants. We targeted the transmembrane and cytoplasmic domains of VLGR1, yielding a gene encoding the complete ectodomain of VLGR1 fused to antigenic tags (VLGR/del7TM). Homozygous mutant mice are susceptible to audiogenic seizures. Western blots detect a single very high molecular weight protein in brain extracts from VLGR/del7TM mice. These findings suggest that loss of VLGR1 transmembrane and cytoplasmic domains underlies the seizure phenotype in both mutant mouse strains, perhaps by disrupting signals regulating neural development.

Keywords

Neurons, Cell Membrane, Brain, Gene Expression Regulation, Developmental, Mice, Transgenic, Epilepsy, Reflex, Protein Structure, Tertiary, Receptors, G-Protein-Coupled, Alternative Splicing, Mice, Mice, Neurologic Mutants, Fetus, Phenotype, Mutation, Animals, Genetic Predisposition to Disease

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    74
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
74
Top 10%
Top 10%
Top 10%