A Common Set of DNA Regulatory Elements Shapes Drosophila Appendages
A Common Set of DNA Regulatory Elements Shapes Drosophila Appendages
Animals have body parts made of similar cell types located at different axial positions, such as limbs. The identity and distinct morphology of each structure is often specified by the activity of different "master regulator" transcription factors. Although similarities in gene expression have been observed between body parts made of similar cell types, how regulatory information in the genome is differentially utilized to create morphologically diverse structures in development is not known. Here, we use genome-wide open chromatin profiling to show that among the Drosophila appendages, the same DNA regulatory modules are accessible throughout the genome at a given stage of development, except at the loci encoding the master regulators themselves. In addition, open chromatin profiles change over developmental time, and these changes are coordinated between different appendages. We propose that master regulators create morphologically distinct structures by differentially influencing the function of the same set of DNA regulatory modules.
- University of North Carolina at Chapel Hill United States
- UNC Lineberger Comprehensive Cancer Center United States
Homeodomain Proteins, Binding Sites, Genome, Gene Expression Regulation, Developmental, Regulatory Sequences, Nucleic Acid, Chromatin, Animals, Drosophila Proteins, Drosophila, Developmental Biology, Transcription Factors
Homeodomain Proteins, Binding Sites, Genome, Gene Expression Regulation, Developmental, Regulatory Sequences, Nucleic Acid, Chromatin, Animals, Drosophila Proteins, Drosophila, Developmental Biology, Transcription Factors
34 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).130 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
