Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Medicinearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Medicine
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Medicine
Article . 2004
versions View all 2 versions

Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling

Authors: Ryousuke Fujita; Harunor Rashid; Makoto Inoue; Hiroshi Ueda; Jerold Chun; James J. A. Contos;

Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling

Abstract

Lysophosphatidic acid (LPA) is a bioactive lipid with activity in the nervous system mediated by G-protein-coupled receptors. Here, we examined the role of LPA signaling in the development of neuropathic pain by pharmacological and genetic approaches, including the use of mice lacking the LPA(1) receptor. Wild-type animals with nerve injury develop behavioral allodynia and hyperalgesia paralleled by demyelination in the dorsal root and increased expression of both the protein kinase C gamma-isoform within the spinal cord dorsal horn and the alpha(2)delta(1) calcium channel subunit in dorsal root ganglia. Intrathecal injection of LPA induced behavioral, morphological and biochemical changes similar to those observed after nerve ligation. In contrast, mice lacking a single LPA receptor (LPA(1), also known as EDG2) that activates the Rho-Rho kinase pathway do not develop signs of neuropathic pain after peripheral nerve injury. Inhibitors of Rho and Rho kinase also prevented these signs of neuropathic pain. These results imply that receptor-mediated LPA signaling is crucial in the initiation of neuropathic pain.

Keywords

ADP Ribose Transferases, Male, Botulinum Toxins, Pain, Receptors, G-Protein-Coupled, Mice, Inbred C57BL, Mice, Hyperalgesia, Animals, Calcium Channels, Receptors, Lysophosphatidic Acid, rhoA GTP-Binding Protein, Protein Kinase C, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    494
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
494
Top 1%
Top 1%
Top 1%