Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1997
versions View all 2 versions

A role for Cajal–Retzius cells and reelin in the development of hippocampal connections

Authors: Del Río, José A.; Heimrich, Bernd; Borrell, Víctor; Förster, Eckart; Drakew, Alexander; Alcántara, Soledad; Nakajima, Kazunori; +6 Authors

A role for Cajal–Retzius cells and reelin in the development of hippocampal connections

Abstract

During development of the nervous system, specific recognition molecules provide the cues necessary for the formation of neural connections. In some regions, guiding cues for axonal pathfinding and target selection are provided by specific cells that exist only transiently during development, such as the floorplate or the cortical subplate. In the hippocampus, distinct groups of fibres innervate different layers. We have tested the hypothesis that transient neurons in the hippocampus provide positional information for the targeting of these fibres. Here we report that ablation of Cajal-Retzius cells in organotypic slice cultures of hippocampus prevented the ingrowth of entorhinal but not of commissural afferents. Experiments inhibiting Reelin (an extracellular matrix protein expressed by Cajal-Retzius cells) and analysis of reeler mutant mice showed dramatic abnormalities in the development of entorhinal afferents. Thus Cajal-Retzius cells and reelin are essential for the formation of layer-specific hippocampal connections.

Keywords

Extracellular Matrix Proteins, Cell Adhesion Molecules, Neuronal, Serine Endopeptidases, Antibodies, Monoclonal, Nerve Tissue Proteins, Hippocampus, Axons, Mice, Mice, Neurologic Mutants, Reelin Protein, Astrocytes, Culture Techniques, Neural Pathways, Animals, Entorhinal Cortex, Neurons, Afferent

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    438
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
438
Top 1%
Top 1%
Top 0.1%