Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium

Authors: Trese, Leinders-Zufall; Renee E, Cockerham; Stylianos, Michalakis; Martin, Biel; David L, Garbers; Randall R, Reed; Frank, Zufall; +1 Authors

Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium

Abstract

The mammalian main olfactory epithelium (MOE) recognizes and transduces olfactory cues through a G protein-coupled, cAMP-dependent signaling cascade. Additional chemosensory transduction mechanisms have been suggested but remain controversial. We show that a subset of MOE neurons expressing the orphan receptor guanylyl cyclase GC-D and the cyclic nucleotide-gated channel subunit CNGA3 employ an excitatory cGMP-dependent transduction mechanism for chemodetection. By combining gene targeting of Gucy2d , which encodes GC-D, with patch clamp recording and confocal Ca 2+ imaging from single dendritic knobs in situ , we find that GC-D cells recognize the peptide hormones uroguanylin and guanylin as well as natural urine stimuli. These molecules stimulate an excitatory, cGMP-dependent signaling cascade that increases intracellular Ca 2+ and action potential firing. Responses are eliminated in both Gucy2d - and Cnga3 -null mice, demonstrating the essential role of GC-D and CNGA3 in the transduction of these molecules. The sensitive and selective detection of two important natriuretic peptides by the GC-D neurons suggests the possibility that these cells contribute to the maintenance of salt and water homeostasis or the detection of cues related to hunger, satiety, or thirst.

Keywords

Neurons, Patch-Clamp Techniques, Molecular Sequence Data, Mice, Transgenic, Ligands, Epithelium, Electrophysiology, Mice, Olfactory Mucosa, Receptors, Guanylate Cyclase-Coupled, Animals, Humans, Amino Acid Sequence, Natriuretic Peptides, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    197
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
197
Top 10%
Top 10%
Top 1%
bronze