Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Behavioral and Brain...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Behavioral and Brain Functions
Article . 2013 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Behavioral and Brain Functions
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2013
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/17...
Other literature type . 2013
Data sources: Datacite
https://dx.doi.org/10.60692/53...
Other literature type . 2013
Data sources: Datacite
versions View all 6 versions

BAIAP2 exhibits association to childhood ADHD especially predominantly inattentive subtype in Chinese Han subjects

يظهر BAIAP2 ارتباطًا باضطراب فرط الحركة ونقص الانتباه في مرحلة الطفولة خاصة النوع الفرعي الغافل في الغالب في موضوعات الهان الصينية
Authors: Lu Liu; Li Sun; Zehua Li; Haimei Li; Liping Wei; Yufeng Wang; Qiujin Qian;

BAIAP2 exhibits association to childhood ADHD especially predominantly inattentive subtype in Chinese Han subjects

Abstract

Abstract Background Attention-deficit/hyperactivity disorder (ADHD) is a common chronic neurodevelopmental disorder with a high heritability. Much evidence of hemisphere asymmetry has been found for ADHD probands from behavioral level, electrophysiological level and brain morphology. One previous research has reported possible association between BAIAP2, which is asymmetrically expressed in the two cerebral hemispheres, with ADHD in European population. The present study aimed to investigate the association between BAIAP2 and ADHD in Chinese Han subjects. Methods A total of 1,397 ADHD trios comprised of one ADHD proband and their parents were included for family-based association tests. Independent 569 ADHD cases and 957 normal controls were included for case-control studies. Diagnosis was performed according to the DSM-IV criteria. Nine single nucleotide polymorphisms (SNPs) of BAIAP2 were chosen and performed genotyping for both family-based and case-control association studies. Results Transmission disequilibrium tests (TDTs) for family-based association studies showed significant association between the CA haplotype comprised by rs3934492 and rs9901648 with predominantly inattentive type (ADHD-I). For case-control study, chi-square tests provided evidence for the contribution of SNP rs4969239, rs3934492 and rs4969385 to ADHD and its two clinical subtypes, ADHD-I and ADHD-C. However, only the associations for ADHD and ADHD-I retained significant after corrections for multiplicity or logistic regression analyses adjusting the potential confounding effect of gender and age. Conclusions These above results indicated the possible involvement of BAIAP2 in the etiology of ADHD, especially ADHD-I.

Related Organizations
Keywords

Male, Etiology, Analysis of Brain Functional Connectivity Networks, Gene, Functional Laterality, Linkage Disequilibrium, Proband, Behavioral Neuroscience, Psychology, Confounding, Child, Attention-Deficit/Hyperactivity Disorder, Internal medicine, Single-nucleotide polymorphism, Psychiatry, Life Sciences, Neural Mechanisms of Cognitive Control and Decision Making, FOS: Psychology, Psychiatry and Mental health, Medicine, Female, Genetic Markers, Adolescent, Genotype, Cognitive Neuroscience, Clinical psychology, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Attention deficit hyperactivity disorder, Young Adult, Asian People, Health Sciences, Linkage disequilibrium, Genetics, Humans, ADHD, Genetic Predisposition to Disease, Biology, Biological Psychiatry, Research, Adolescent Brain Development, Logistic Models, Haplotypes, Attention Deficit Disorder with Hyperactivity, Case-Control Studies, FOS: Biological sciences, Mutation, Genetic association, Neuroscience

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Average
Average
Green
gold