Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Isolation and expression of Napor/CUG-BP2 in embryo development

Authors: Dong-Kug, Choi; Kyeong-Won, Yoo; Sung-Kook, Hong; Myungchull, Rhee; Yoshiyuki, Sakaki; Cheol-Hee, Kim;

Isolation and expression of Napor/CUG-BP2 in embryo development

Abstract

The human neuroblastoma apoptosis-related RNA-binding protein NAPOR is an ELAV-like RNA-binding protein with three characteristic RNA recognition motifs (RRMs). We report here the cloning and characterization of a zebrafish Napor that has a high sequence homology to human NAPOR protein. Whole-mount in situ hybridization analysis revealed that zebrafish napor is dynamically expressed in early development. In addition to its maternal expression, napor transcripts were detected in adaxial mesoderm cells and lateral neural plate cells at early somite stages. By 10-somite stage, napor expression was restricted to the central nervous system, having a specific expression domain of rhombomere 5 in the hindbrain. In 24 hpf embryo, napor was expressed in subsets of differentiating neural cells in the forebrain and hindbrain as well as somitic muscle cells. The number of napor-expressing neural cells was greatly increased in the mind bomb mutant that has neurogenic phenotype resulting from deficits in the Notch signaling pathway. Furthermore, overexpression of napor by RNA microinjection resulted in severe defects in nervous system and gastrulation, suggesting the need for tight control of napor gene regulation during embryo development.

Keywords

Neurons, DNA, Complementary, Embryo, Nonmammalian, Transcription, Genetic, Molecular Sequence Data, RNA-Binding Proteins, Nerve Tissue Proteins, Zebrafish Proteins, Embryo, Mammalian, Nervous System, Embryonic and Fetal Development, Mice, Mutation, Animals, CELF Proteins, Humans, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment, Zebrafish

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Average