Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Washington State Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Psychopharmacology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Psychopharmacology
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Cannabidiol modulation of antinociceptive tolerance to Δ9-tetrahydrocannabinol

Authors: Nicholas Z. Greene; Jenny L. Wiley; Zhihao Yu; Brian H. Clowers; Rebecca M. Craft;

Cannabidiol modulation of antinociceptive tolerance to Δ9-tetrahydrocannabinol

Abstract

Humans typically self-administer cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) together repeatedly (as in cannabis, cannabis extract, or Sativex®) to relieve pain. It has been suggested that one benefit of the drug combination may be decreased tolerance development.The present study compared the development of tolerance to the antinociceptive effects of THC given alone versus combined with CBD, in rats.THC dose-effect curves on tail withdrawal and paw pressure tests were obtained before and after twice-daily treatment with vehicle or CBD (10 mg/kg), plus vehicle or THC (3.6 mg/kg females; 9.3 mg/kg males) for 4 days.On the first day, THC was more potent in females than males on both nociceptive tests. From pre- to post-chronic (day 1 to day 6), THC potency on the tail withdrawal test decreased more in females than males, and rats that had been treated with CBD + THC repeatedly showed greater rightward/downward shifts of the THC dose-effect curve than rats that had been treated with THC alone. Analysis of blood samples taken after day 6 testing showed that serum THC levels were higher in CBD + THC-treated females than in vehicle + THC-treated females, and THC's active metabolite 11-OH-THC and its inactive metabolite THC-COOH were lower in CBD + THC-treated rats than in vehicle + THC-treated rats of both sexes. CBD also increased serum levels of the active metabolite cannabinol in both sexes.The decrease in THC's antinociceptive effects after repeated CBD exposure may be due to CBD-induced inhibition of THC metabolism, and/or antagonism of THC effects that emerges with repeated CBD treatment.

Keywords

Male, Dose-Response Relationship, Drug, Cannabinoids, Pain, 610, Drug Tolerance, Analgesics, Non-Narcotic, Motor Activity, Rats, Rats, Sprague-Dawley, 615, Animals, Cannabidiol, Drug Therapy, Combination, Female, Dronabinol, Sex Differences, Pain Measurement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Average
Top 10%
Green
bronze