Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 1999 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MPG.PuRe
Article . 1999
Data sources: MPG.PuRe
The EMBO Journal
Article . 1999
versions View all 3 versions

Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases

Authors: Albert, S.; Will, E.; Gallwitz, D.;

Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases

Abstract

Ypt/Rab proteins constitute the largest subfamily of the Ras superfamily of monomeric GTPases and are regulators of vesicular protein transport. Their slow intrinsic GTPase activity (10(-4)-10(-3) min(-1) at 30 degrees C) has to be accelerated to switch the active to the inactive conformation. We have identified the catalytic domain within the C-terminal halves of two yeast GTPase-activating proteins (GAPs), Gyp1p and Gyp7p, with specificity for Ypt/Rab GTPases. The catalytically active fragments of Gyp1p and Gyp7p were more active than the full-length proteins and accelerated the intrinsic GTP hydrolysis rates of their preferred substrates by factors of 4.5 x 10(4) and 7.8 x 10(5), respectively. The K(m) values for the Gyp1p and Gyp7p active fragments (143 and 42 microM, respectively) indicate that the affinities of those GAPs for their substrates are very low. The catalytic domains of Gyp1p and Gyp7p contain five invariant arginine residues; substitutions of only one of them (R343 in Gyp1p and R458 in the analogous position of Gyp7p) rendered the GAPs almost completely inactive. We suggest that Ypt/Rab-GAPs, like Ras- and Rho-GAPs, follow the same mode of action and provide a catalytic arginine ('arginine finger') in trans to accelerate the GTP hydrolysis rate of the transport GTPases.

Keywords

Base Sequence, Sequence Homology, Amino Acid, GTPase-Activating Proteins, Molecular Sequence Data, Saccharomyces cerevisiae, Arginine, GTP Phosphohydrolases, Substrate Specificity, Kinetics, Catalytic Domain, Mutagenesis, Site-Directed, Amino Acid Sequence, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    155
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
155
Top 10%
Top 10%
Top 1%
Green
gold