Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Regulatory Peptidesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Regulatory Peptides
Article . 1985 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

VIP and PHI in cat neurons: co-localization but variable tissue content possible due to differential processing

Authors: J, Fahrenkrug; T, Bek; J M, Lundberg; T, Hökfelt;

VIP and PHI in cat neurons: co-localization but variable tissue content possible due to differential processing

Abstract

The concentrations of vasoactive intestinal polypeptide (VIP) and the peptide with NH2- terminal histidine and COOH-terminal isoleucine (PHI) in various peripheral tissues and some areas in the CNS of the cat were compared with their immunohistochemical localization. The VIP levels in the gastrointestinal tract were 3 to 6 times higher than PHI levels. Much (up to 10-fold) higher VIP than PHI levels were also observed in the genitourinary tract as well as in the lung and heart. In the neurohypophysis, however, the VIP/PHI ratio was close to 1. Gel-permeation chromatography revealed that VIP- and PHI-immunoreactivity (IR) in the intestine, pancreas and brain consisted of three larger molecular forms in addition to the 'standard' peptides. These larger forms which had overlapping elution positions may represent prepro-VIP/PHI forms. The immunohistochemical analysis revealed that VIP- and PHI-IR was present in the same ganglion cells in the intestine, pancreas, uterus and sympathetic ganglia. Furthermore, the terminal networks for these two peptides were very similar in the periphery. In the median eminence of the hypothalamus and in the posterior lobe of the pituitary, considerably more nerves were PHI- than VIP-IR. This observation was in parallel to a low VIP/PHI ratio. In conclusion, VIP and PHI seem to co-exist in most neuronal systems. Although the ratio of VIP and PHI on the precursor gene is 1:1, differences in posttranslational processing may create a considerably higher content of VIP than PHI in most terminal areas.

Related Organizations
Keywords

Neurons, Histocytochemistry, Radioimmunoassay, Fluorescent Antibody Technique, Peptide PHI, Cats, Chromatography, Gel, Animals, Tissue Distribution, Amino Acid Sequence, Peptides, Vasoactive Intestinal Peptide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Average
Top 10%
Top 10%