Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2015
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2015 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Drosophila Sugar Receptors in Sweet Taste Perception, Olfaction, and Internal Nutrient Sensing

Authors: Fujii, Shinsuke; Yavuz, Ahmet; Slone, Jesse; Jagge, Christopher; Song, Xiangyu; Amrein, Hubert;

Drosophila Sugar Receptors in Sweet Taste Perception, Olfaction, and Internal Nutrient Sensing

Abstract

Identification of nutritious compounds is dependent on expression of specific taste receptors in appropriate taste-cell types [1]. In contrast to mammals, which rely on a single, broadly tuned heterodimeric sugar receptor [2], the Drosophila genome harbors a small subfamily of eight, closely related gustatory receptor (Gr) genes, Gr5a, Gr61a, and Gr64a-Gr64f, of which three have been proposed to mediate sweet taste [3-6]. However, expression and function of several of these putative sugar Gr genes are not known. Here, we present a comprehensive expression and functional analysis using Gr(LEXA/GAL4) alleles that were generated through homologous recombination. We show that sugar Gr genes are expressed in a combinatorial manner to yield at least eight sets of sweet-sensing neurons. Behavioral investigations show that most sugar Gr mutations affect taste responses to only a small number of sugars and that effective detection of most sugars is dependent on more than one Gr gene. Surprisingly, Gr64a, one of three Gr genes previously proposed to play a major role in sweet taste [3, 4], is not expressed in labellar taste neurons, and Gr64a mutant flies exhibit normal sugar responses elicited from the labellum. Our analysis provides a molecular rationale for distinct tuning profiles of sweet taste neurons, and it favors a model whereby all sugar Grs contribute to sweet taste. Furthermore, expression in olfactory organs and the brain implies novel roles for sugar Gr genes in olfaction and internal nutrient sensing, respectively. Thus, sugar receptors may contribute to feeding behavior via multiple sensory systems.

Related Organizations
Keywords

Neurons, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Gene Expression Profiling, Brain, Taste Perception, Receptors, Cell Surface, Feeding Behavior, Olfactory Receptor Neurons, Smell, Gene Components, Animals, Drosophila Proteins, Animal Nutritional Physiological Phenomena, Drosophila, Gene Knock-In Techniques, Sensilla, Homologous Recombination

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    209
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
209
Top 1%
Top 10%
Top 1%
hybrid