Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Anesthesia & Analges...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Anesthesia & Analgesia
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Opioid-Induced Preconditioning Is Dependent on Caveolin-3 Expression

Authors: Hemal H. Patel; Ingrid R. Niesman; Yasuo M. Tsutsumi; Yoshitaka Kawaraguchi; David M. Roth;

Opioid-Induced Preconditioning Is Dependent on Caveolin-3 Expression

Abstract

We tested the hypothesis that caveolin-3 (Cav-3) is essential for opioid-induced preconditioning in vivo. Cav-3 overexpressing mice, Cav-3 knockout mice, and controls were exposed to myocardial ischemia/reperfusion (I/R) in the presence of SNC-121 (SNC), a δ-selective opioid agonist, or naloxone, a nonselective opioid antagonist. Controls were protected from I/R injury by SNC. No protection was produced by SNC in Cav-3 knockout mice. Cav-3 overexpressing mice showed innate protection from I/R compared with controls that was abolished by naloxone. Our results show that opioid-induced preconditioning is dependent on Cav-3 expression and that endogenous protection in Cav-3 overexpressing mice is opioid dependent.

Keywords

Male, Mice, Knockout, Caveolin 3, Naloxone, Myocardium, Narcotic Antagonists, Myocardial Infarction, Blood Pressure, Mice, Transgenic, Myocardial Reperfusion Injury, Drug Administration Schedule, Piperazines, Analgesics, Opioid, Mice, Inbred C57BL, Disease Models, Animal, Mice, Heart Rate, Receptors, Opioid, delta, Benzamides, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Average
Top 10%
bronze