Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ North-West Universit...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ChemMedChem
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
ChemMedChem
Article . 2016
versions View all 3 versions

Indanones As High‐Potency Reversible Inhibitors of Monoamine Oxidase

Authors: Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P.;

Indanones As High‐Potency Reversible Inhibitors of Monoamine Oxidase

Abstract

AbstractRecent reports document that α‐tetralone (3,4‐dihydro‐2H‐naphthalen‐1‐one) is an appropriate scaffold for the design of high‐potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α‐tetralone and 1‐indanone, the present study involved synthesis of 34 1‐indanone and related indane derivatives as potential inhibitors of recombinant human MAO‐A and MAO‐B. The results show that C6‐substituted indanones are particularly potent and selective MAO‐B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM. C5‐Substituted indanone and indane derivatives are comparatively weaker MAO‐B inhibitors. Although the 1‐indanone and indane derivatives are selective inhibitors of the MAO‐B isoform, a number of homologues are also potent MAO‐A inhibitors, with three homologues possessing IC50 values <0.1 μM. Dialysis of enzyme–inhibitor mixtures further established a selected 1‐indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1‐indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson’s disease and depression.

Country
South Africa
Related Organizations
Keywords

Models, Molecular, Monoamine Oxidase Inhibitors, Dose-Response Relationship, Drug, Molecular Structure, Inhibitors, Monoamine oxidase, Molecular modeling, 540, Recombinant Proteins, Structure-Activity Relationship, Indans, Parkinson’s disease, Humans, Monoamine Oxidase, Indanones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 1%
Top 10%
Top 10%
Green