Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1991 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1991
versions View all 2 versions

Studies on the rate and site-specificity of P element transposition.

Authors: C A, Berg; A C, Spradling;

Studies on the rate and site-specificity of P element transposition.

Abstract

Abstract A single genetically marked P element can be efficiently mobilized to insertionally mutagenize the Drosophila genome. We have investigated how the structure of the starting element and its location along the X chromosome influenced the rate and location of mutations recovered. The structure of two P[rosy+] elements strongly affected mobilization by the autonomous "Jumpstarter-1" element. Their average transposition rates differed more than 12-fold, while their initial chromosomal location had a smaller effect. The lethal and sterile mutations induced by mobilizing a P[rosy+] element from position 1F were compared with those identified previously using a P[neoR] element at position 9C. With one possible exception, insertion hotspots for one element were frequently also targets of the other transposon. These experiments suggested that the genomic location of a P element does not usually influence its target sites on nonhomologous chromosomes. During the course of these experiments, Y-linked insertions expressing rosy+ were recovered, suggesting that marked P elements can sometimes insert and function at heterochromatic sites.

Related Organizations
Keywords

Male, Blotting, Southern, Mutagenesis, Insertional, Genetics, Population, X Chromosome, Y Chromosome, Genetic Complementation Test, DNA Transposable Elements, Mutagenesis, Site-Directed, Animals, Drosophila, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
hybrid