Powered by OpenAIRE graph

Prejunctional inhibition of vasoactive intestinal peptide release

Authors: J R, Grider; G M, Makhlouf;

Prejunctional inhibition of vasoactive intestinal peptide release

Abstract

The role of vasoactive intestinal peptide (VIP) and its homologue, peptide histidine isoleucine (PHI), as neurotransmitters of inhibitory motor nerves of the gut, were examined in strips of guinea pig taenia coli and gastric fundic muscle. The stoichiometry of VIP release and muscle relaxation was determined in the presence and absence of the bee venom peptide, apamin, and the existence of prejunctional VIP/PHI receptors capable of regulating VIP/PHI release was explored. In both types of muscle, relaxation induced by field stimulation was proportional to the amount of VIP released. Apamin inhibited relaxation and VIP release in a dose-dependent manner: maximal relaxation was inhibited by 85–96% at 10(-7)-10(-6) M apamin. Analysis of residual responses showed that apamin did not affect the stoichiometry of VIP release and muscle relaxation. Because apamin had no effect on basal tone or on relaxation induced by exogenous VIP, its effect on neurally induced relaxation was attributed to inhibition of VIP release. Both secretin and PHI inhibited neurally induced VIP release in the two types of muscle. At the optimal concentration of 10(-7) M, secretin inhibited VIP release by 52%, whereas the closer neural homologue, PHI, abolished VIP release. The dose-dependent inhibition of VIP release by PHI, which is cosynthesized and coreleased with VIP, indicates the existence of prejunctional inhibitory VIP/PHI autoreceptors capable of regulating VIP/PHI release.

Keywords

Male, Colon, Muscle Relaxation, Guinea Pigs, In Vitro Techniques, Peptide PHI, Intercellular Junctions, Apamin, Secretin, Animals, Nervous System Physiological Phenomena, Gastric Fundus, Vasoactive Intestinal Peptide

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Average
Top 10%
Top 10%