Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science
Article
Data sources: UnpayWall
Science
Article . 2021 . Peer-reviewed
Data sources: Crossref
Science
Article . 2021
versions View all 2 versions

Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT

Authors: Yiyang Jiang; Thomas L. Benz; Stephen B. Long;

Substrate and product complexes reveal mechanisms of Hedgehog acylation by HHAT

Abstract

How Hedgehog gets its lipid tail Phospholipid membranes serve as barriers between different cellular environments but are also crucial platforms for biosynthesis, signaling, and transport. In animals, the developmental signaling protein Hedgehog must be modified with an acyl group by the membrane-embedded enzyme Hedgehog acyltransferase (HHAT) to be recognized by its receptor. Using cryo–electron microscopy, Jiang et al. determined structures of HHAT bound to palmitoyl–coenzyme A or a palmitoylated peptide product. Two cavities connect at the active site, enabling acylation of Hedgehog in the lumen of the endoplasmic reticulum by lipid substrates from the cytosolic face of the membrane. Science , abg4998, this issue p. 1215

Related Organizations
Keywords

Models, Molecular, Palmitoyl Coenzyme A, Acylation, Lipoylation, Cryoelectron Microscopy, Intracellular Membranes, Molecular Dynamics Simulation, Endoplasmic Reticulum, Peptide Fragments, Protein Structure, Secondary, Catalytic Domain, Biocatalysis, Humans, Hedgehog Proteins, Protein Interaction Domains and Motifs, Protein Processing, Post-Translational, Acyltransferases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
54
Top 1%
Top 10%
Top 1%
bronze