Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemistry and Cel...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemistry and Cell Biology
Article . 2002 . Peer-reviewed
License: CSP TDM
Data sources: Crossref
versions View all 2 versions

Assessing the structure of membrane proteins: combining different methods gives the full picture

Authors: Stahlberg, H.; Engel, A.; Philippsen, A.;

Assessing the structure of membrane proteins: combining different methods gives the full picture

Abstract

The rotor stoichiometry of F-ATPases has been revealed by the combined approaches of X-ray diffraction (XRD), electron crystallography, and atomic force microscopy (AFM). XRD showed the rotor from the yeast mitochondrial F-ATPase to contain 10 subunits. AFM was used to visualize the tetradecameric chloroplast rotors, and electron crystallography and AFM together revealed the rotors from Ilyobacter tartaricus to be composed of 11 subunits. While biochemical methods had determined an approximate stoichiometric value, precise measurements and new insights into a species-dependent rotor stoichiometry became available by applying the three structural tools together. The structures of AQP1, a water channel, and GlpF, a glycerol channel, were determined by electron crystallography and XRD. The combination of both of these structural tools with molecular dynamics simulations gave a differentiated description of the mechanisms determining the selectivity of water and glycerol channels. This illustrates that the combination of different methods in structural biology reveals more than each method alone.Key words: AQP1, GlpF, F-ATPase, XRD, electron crystallography, AFM.

Related Organizations
Keywords

Glycerol, Models, Molecular, Chloroplasts, Protein Conformation, Escherichia coli Proteins, Membrane Proteins, Water, Aquaporins, Crystallography, X-Ray, Microscopy, Atomic Force, Proton-Translocating ATPases, Crystallization

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average