Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Neuroscience
Article . 2007
versions View all 2 versions

Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development

Authors: D, Watanabe; K, Uchiyama; K, Hanaoka;

Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development

Abstract

Dnmt3a and Dnmt3b, which are known as functional de novo methyltransferases, are responsible for creating genomic methylation patterns during mammalian development. Recently, we have shown that specific expression of Dnmt3b in epiblast, embryonic ectoderm, hematopoietic progenitor cells and spermatogonia cells is followed by Dnmt3a expression (Watanabe D, Suetake I, Tada T, Tajima S (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118:187-190; Watanabe D, Suetake I, Tajima S, Hanaoka K (2004) Expression of Dnmt3b in mouse hematopoietic progenitor cells and spermatogonia at specific stages. Gene Expr Patterns 5:43-49). In this study, we analyzed the expression of mouse de novo methyltransferases during development of the nervous systems. In the embryonic olfactory epithelium (OE), Dnmt3b was specifically expressed in Mash1 positive globose basal cells (i.e. transiently amplifying neural progenitor cells), while Dnmt3a was expressed in immature olfactory receptor neurons. Dnmt3b-positive cells were rarely observed in the adult OE, but were increased in regenerating OE with intranasal ZnSO(4) administration. Dnmt3b was also detected in the E8.5 neural plate, E10.5 spinal cord and retina cells, while Dnmt3a was expressed in postmitotic young neurons. Furthermore, Dnmt3b was specifically expressed in ES cells, while Dnmt3a was transiently expressed during neural cell differentiation of ES cells. Dnmt3b is specifically expressed in progenitor cells during hematopoiesis, spermatogenesis and neurogenesis, suggesting an important role in the initial steps of progenitor cell differentiation. Dnmt3a is expressed in postmitotic young neurons following the Dnmt3b expression. Dnmt3a may be required for the establishment of tissue-specific methylation patterns of the genome. The coordinated expression of de novo methyltransferases from Dnmt3b to Dnmt3a suggests conserved mechanisms of de novo methylation of the genome and different functions for Dnmt3b and Dnmt3a during progenitor cell development.

Related Organizations
Keywords

Neurons, DNA Methyltransferase 3B, Mice, Inbred ICR, Stem Cells, Brain, Gene Expression Regulation, Developmental, Cell Differentiation, In Vitro Techniques, Embryo, Mammalian, Immunohistochemistry, Zinc Sulfate, DNA Methyltransferase 3A, Nerve Regeneration, Mice, Animals, Newborn, Spinal Cord, Basic Helix-Loop-Helix Transcription Factors, Animals, DNA (Cytosine-5-)-Methyltransferases, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 10%