Craniosynostosis in transgenic mice overexpressing Nell-1
Craniosynostosis in transgenic mice overexpressing Nell-1
Previously, we reported NELL-1 as a novel molecule overexpressed during premature cranial suture closure in patients with craniosynostosis (CS), one of the most common congenital craniofacial deformities. Here we describe the creation and analysis of transgenic mice overexpressing Nell-1. Nell-1 transgenic animals exhibited CS-like phenotypes that ranged from simple to compound synostoses. Histologically, the osteogenic fronts of abnormally closing/closed sutures in these animals revealed calvarial overgrowth and overlap along with increased osteoblast differentiation and reduced cell proliferation. Furthermore, anomalies were restricted to calvarial bone, despite generalized, non-tissue-specific overexpression of Nell-1. In vitro, Nell-1 overexpression accelerated calvarial osteoblast differentiation and mineralization under normal culture conditions. Moreover, Nell-1 overexpression in osteoblasts was sufficient to promote alkaline phosphatase expression and micronodule formation. Conversely, downregulation of Nell-1 inhibited osteoblast differentiation in vitro. In summary, Nell-1 overexpression induced calvarial overgrowth resulting in premature suture closure in a rodent model. Nell-1, therefore, has a novel role in CS development, perhaps as part of a complex chain of events resulting in premature suture closure. On a cellular level, Nell-1 expression may modulate and be both sufficient and required for osteoblast differentiation.
- University of California, Irvine United States
- Kobe University Japan
- National Institutes of Health United States
- Chang Gung University Taiwan
- Chang Gung Memorial Hospital Taiwan
Osteoblasts, Calcium-Binding Proteins, Skull, Brain, Mice, Transgenic, Nerve Tissue Proteins, Magnetic Resonance Imaging, Adenoviridae, Rats, Craniosynostoses, Mice, Mutation, Animals, Humans, Tissue Distribution, Biomarkers, Cells, Cultured
Osteoblasts, Calcium-Binding Proteins, Skull, Brain, Mice, Transgenic, Nerve Tissue Proteins, Magnetic Resonance Imaging, Adenoviridae, Rats, Craniosynostoses, Mice, Mutation, Animals, Humans, Tissue Distribution, Biomarkers, Cells, Cultured
12 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).137 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
