Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLANT PHYSIOLOGYarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLANT PHYSIOLOGY
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PLANT PHYSIOLOGY
Article . 2007 . Peer-reviewed
Data sources: Crossref
PLANT PHYSIOLOGY
Article . 2007
versions View all 3 versions

The Transiently Generated Nonphotochemical Quenching of Excitation Energy in Arabidopsis Leaves Is Modulated by Zeaxanthin

Authors: Ljudmila, Kalituho; Karl Christian, Beran; Peter, Jahns;

The Transiently Generated Nonphotochemical Quenching of Excitation Energy in Arabidopsis Leaves Is Modulated by Zeaxanthin

Abstract

Upon the transition of dark-adapted plants to low light, the energy-dependent quenching (qE) of excitation energy is only transiently induced due to the only transient generation of the transthylakoid pH gradient. We investigated the transient qE (qE(TR)) in different Arabidopsis (Arabidopsis thaliana) mutants. In dark-adapted plants, qE(TR) was absent in the npq4 mutant (deficient in the PsbS protein) and the pgr1 mutant (restricted in lumen acidification). In comparison with wild-type plants, qE(TR) was reduced in the zeaxanthin (Zx)-deficient npq1 mutant and increased in the Zx-accumulating npq2 mutant. After preillumination of plants (to allow the synthesis of large amounts of Zx), the formation and relaxation of qE(TR) was accelerated in all plants (except for npq4) in comparison with the respective dark-adapted plants. The extent of qE(TR), however, was unchanged in npq1 and npq4, decreased in npq2, but increased in wild-type and pgr1 plants. Even in presence of high levels of Zx, qE(TR) in pgr1 mutants was still lower than that in wild-type plants. In the presence of the uncoupler nigericin, qE(TR) was completely abolished in all genotypes. Thus, the transient qE(TR) shows essentially the same characteristics as the steady-state qE; it is strictly dependent on the PsbS protein and a low lumen pH, but the extent of qE(TR) is largely modulated by Zx. These results indicate that qE(TR) does not represent a different quenching mechanism in comparison with the steady-state qE, but simply reflects the response of qE to the dynamics of the lumen pH during light activation of photosynthesis.

Keywords

Plant Leaves, Dithiothreitol, Light, Nigericin, Photochemistry, Zeaxanthins, Mutation, Arabidopsis, Xanthophylls

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
bronze