Essential Role of MCM Proteins in Premeiotic DNA Replication
Essential Role of MCM Proteins in Premeiotic DNA Replication
A critical event in eukaryotic DNA replication involves association of minichromosome maintenance (MCM2–7) proteins with origins, to form prereplicative complexes (pre-RCs) that are competent for initiation. The ability of mutants defective in MCM2–7 function to complete meiosis had suggested that pre-RC components could be irrelevant to premeiotic S phase. We show here that MCM2–7 proteins bind to chromatin in fission yeast cells preparing for meiosis and during premeiotic S phase in a manner suggesting they in fact are required for DNA replication in the meiotic cycle. This is confirmed by analysis of a degron mcm4 mutant, which cannot carry out premeiotic DNA replication. Later in meiosis, Mcm4 chromatin association is blocked between meiotic nuclear divisions, presumably accounting for the absence of a second round of DNA replication. Together, these results emphasize similarity between replication mechanisms in mitotic and meiotic cell cycles.
- University of Vienna Austria
- University of Oxford United Kingdom
DNA Replication, 1060 Biologie, Cell Cycle Proteins, Saccharomyces cerevisiae, Chromatin, Zoological sciences, S Phase, Fungal Proteins, Meiosis, 1060 Biology, DNA, Fungal, Protein Binding
DNA Replication, 1060 Biologie, Cell Cycle Proteins, Saccharomyces cerevisiae, Chromatin, Zoological sciences, S Phase, Fungal Proteins, Meiosis, 1060 Biology, DNA, Fungal, Protein Binding
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).85 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
