Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS UNIMORE - Archi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Anatomical Record Part A Discoveries in Molecular Cellular and Evolutionary Biology
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Osteocyte dendrogenesis in static and dynamic bone formation: An ultrastructural study

Authors: PALUMBO, Carla; FERRETTI, Marzia; MAROTTI, Gastone;

Osteocyte dendrogenesis in static and dynamic bone formation: An ultrastructural study

Abstract

AbstractThe present ultrastructural investigation into osteocyte dendrogenesis represents a continuation of a previous study (Ferretti et al., Anat. Embryol., ; 206:21–29), in which we pointed out that, during intramembranous ossification, the well‐known dynamic bone formation (DBF), performed by migrating osteoblast laminae, is preceded by static bone formation (SBF), in which cords of stationary osteoblasts transform into osteocytes in the same site where they differentiated. The research was carried out on the perichondral center of ossification surrounding the mid shaft level of various long bones of chick embryos and newborn rabbits. Transmission electron microscope observations showed that the formation of osteocyte dendrites is quite different in the two types of osteogenesis, mainly depending on whether or not osteoblast movement occurs. In DBF, osteoblasts transform into small ovoidal/ellipsoidal osteocytes and their dentrites form in an asynchronous and asymmetrical manner in concomitance with, and depending on, the advancing mineralizing surface and the receding osteogenic laminae. In SBF, stationary osteoblasts give rise to big globous osteocytes, located inside confluent lacunae, with short and symmetrical dendrites that can radiate simultaneously all around their cell body because they are completely surrounded by unmineralized matrix. Contacts and gap junctions were observed between all osteocytes (both SBF‐ and DBF‐derived) and between osteocytes and osteoblasts. Finally, a continuous osteocyte network extends throughout the bone, regardless of its static or dynamic origin. This network has the characteristic of a functional syncytium, potentially capable of modulating, by wiring transmission, the cells of the osteogenic lineage covering the bone surfaces. Anat Rec Part A 278A:474–480, 2004. © 2004 Wiley‐Liss, Inc.

Keywords

Animals, Newborn, Microscopy, Electron, Transmission, Osteogenesis, Animals, Cell Surface Extensions, Chick Embryo, Rabbits, STRAIN-RELATED CHANGES; LOADING INVIVO; MECHANOTRANSDUCTION; DIFFERENTIATION; INVITRO; SYSTEM; TIBIA, Osteocytes, Bone and Bones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 103
    download downloads 139
  • 103
    views
    139
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
62
Top 10%
Top 10%
Top 10%
103
139
Green
bronze